High precision QCD at hadron colliders

New techniques and results for perturbative calculations

Frank Petriello

Johns Hopkins University

Argonne HEP Division
May 2004

Outline

- Motivation and introduction
- Parton distribution functions
 - DGLAP kernels at NNLO
 - PDF errors
- Progress in next-to-leading order calculations
 - Higgs phenomenology
 - New techniques for NLO calculations
 - Merging NLO with parton showers
- Progress in NNLO calculations
 - New techniques for two-loop integrals
 - Understanding infrared divergences at NNLO
 - Phenomenology at NNLO
- Conclusions and outlook

The need for high precision

- Provides strong constraints on the SM and its extensions
 - Incredible success of the LEP, SLC Z-pole program
 - Extraction of M_W , m_t at the Tevatron
 - ⇒ Precision EW data provides a vital experimental handle on new physics models
 - Become consistency checks, discriminators in presence of new physics
- Precise predictions for signals, backgrounds
- Measurements of NP parameters: masses, couplings
- Needed in absence of clear NP effect

Experimental prospects

- Great prospects for precision physics at hadron colliders
 - At the Tevatron
 - Each experiment has $\approx 220 \, \mathrm{pb}^{-1}$ physics-ready data
 - Expect $2 3 \text{ fb}^{-1}$ by LHC turn-on

$$\Delta m_t = \pm 5 \,\mathrm{GeV} \rightarrow \pm (2.5 - 3) \,\mathrm{GeV}$$

 $\Delta M_W = \pm 60 \,\mathrm{MeV} \rightarrow \pm (25 - 30) \,\mathrm{MeV}$

- At the LHC
 - In 1 year at $10 \, \mathrm{fb}^{-1}$: over $10^7 \, W, Z, t\bar{t}$ events $\Rightarrow \Delta \sigma_{stat} \ll 1\%$
 - Improved systematics (j, l) energy scales) from high statistics samples
 - Reduction of luminosity error to 1-5%
- → Percent level physics at the LHC!
- Talks by Dissertori, Huston, Wood at KITP conference on Collider Physics

Precision QCD

- Everything at hadron colliders involves QCD!
- Observables in hadronic collisions

$$N_{events} = L \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \sigma_{ij}(x_1, x_2, \mu^2)$$

- Require
 - luminosity measurement
 - parton distribution functions
 - scattering cross sections

Components of a QCD calculation

- Extract luminosity from well-measured, understood processes
 - Total inelastic cross section at the Tevatron
 - W, Z cross sections at the LHC
 - \Rightarrow Will quote $N_X = N_{W,Z} \left(\frac{\sigma_X}{\sigma_{W,Z}} \right)_{th}$
 - Theory predictions must account for acceptances
- Extract universal PDFs from experiment
 - DIS, jet production, fixed target Drell-Yan
 - Theory predictions must allow x dependence of $f(x, \mu^2)$ to be reconstructed
 - Evolution of momentum scale μ requires DGLAP kernels:

$$\frac{d f(x, \mu^2)}{d \ln \mu^2} = \sum_{n=0}^{\infty} \left(\frac{\alpha_S}{4\pi}\right)^n P^{(n)}(x) \otimes f(x, \mu^2)$$

Cross sections in QCD

- Strong coupling constant not small: $\alpha_S(M_Z) \approx 0.12$
- → higher order corrections important
- Contains scales $l = \ln(\mu^2/Q^2)$
 - UV behavior: renormalization scale dependence (μ_R)
 - IR behavior: factorization scale dependence (μ_F)
 - Scales are arbitrary: $\frac{d\sigma}{d\mu} = 0$
 - \Rightarrow but truncation of expansion at $\mathcal{O}(\alpha_S^n)$ induces a scale dependence of $\mathcal{O}(\alpha_S^{n+1})$
 - Residual scale dependences provide estimate of neglected higher order effects

From LO to NNLO

LO

- No quantitative estimate of cross section
- Few partonic channels open in initial state
- ⇒ poor estimate of kinematics, dependence on PDFs
- Few partons in final state ⇒ poor modeling of jets

NLO

- First quantitative estimate of cross section
- Better modeling of kinematics, final-state structure

NNLO

- Residual scale dependences small
- Allows precision predictions

High precision theory

In the best of all possible worlds:

Scale variations:

- 35% at LO
- 5% at NLO
- $\bullet < 1\%$ at NNLO

Parton distribution functions

Parton distribution functions

Method of extraction

- Choose a data set for a given process (DIS, Drell-Yan, jets)
- Write theory prediction as a convolution of PDFs and hard scattering cross section, at a given order
- Extract PDFs, to the given order
- Evolve to other Q^2 with the DGLAP equation
- Several different sets available: CTEQ, MRST, Alekhin,
 - "NNLO" PDFs provided by MRST, Alekhin
- Sources of error
 - ullet In the evolution: DGLAP kernels not known to needed order in $lpha_S$
 - In the fitting: experimental errors, imprecise hard scattering cross sections, . . .

DGLAP evolution

 Full calculation of NNLO kernels recently completed (Moch, Vermaseren, Vogt)

- Corrections 5-10% for $x<10^{-3}$
- New $\ln^4 x$ LL stucture
- μ variation 1-2% for $x>10^{-3}$ < 8% for $x<10^{-3}$
- N^3LO likely important for small x

- Agrees with approximate result based on first few moments
 - "NNLO" PDFs of MRST, Alekhin likely okay for most phenomenological purposes

PDF errors

• Recent efforts to estimate PDF errors on W, Z, H production

- Variations within a PDF set are small
- $\Rightarrow ~\delta\sigma_W^{NNLO}=\pm 4\%,\, \delta\sigma_H^{NNLO}=\pm 3\%$ for MRST, similar for Alekhin
- Variations between sets larger
- $\Rightarrow \approx 15\%$ for H production (Djouadi, Ferrag) (at NLO, but quoted variations within set were $\approx 5-10\%$)
- $\Rightarrow \leq 8\%$ for W, Z production at the LHC, at NNLO

In the future (?)

- Use full NNLO kinematics for Drell-Yan cross section in fit (only inclusive K-factor)
- Jet cross sections at NNLO
- Add Drell-Yan to Alekhin (only DIS, others global)
- Use LHC data to constrain

Progress in NLO calculations

Advances in NLO Phenomenology

- Several studies of Higgs physics at the LHC
 - $pp \rightarrow t\bar{t}H, b\bar{b}H$: Beenakker et. al.; Dawson et. al.
 - $pp \rightarrow jjH$ (WBF): Figy, Oleari, Zeppenfeld; Berger, Campbell

No longer just discovery; detailed analysis of couplings, etc.

Extracting Higgs couplings

Measure HWW coupling with WBF (ATLAS; Berger, Campbell)

Signal: WBF Background: QCD Hjj

⇒ Higgs production now a background!

 $\mathrm{dN}_{\mathrm{events}}/\mathrm{d}|\eta_{\mathrm{j}}|$

- Separate *S*, *B* with kinematics
- Uncertainty dominated by $\delta S/S$, $\delta B/B$ $\delta B/B=\pm 20\%$, $\delta S/S=\pm 4\%$ (ATLAS) $\delta B/B=\pm 30\%$, $\delta S/S=\pm 10\%$ (BC)
- Estimate $\delta g/g \approx 10\%$ after $200 \, \mathrm{fb}^{-1}$ (BC)
- Background known only at LO
 ⇒ need NLO computation of QCD Hjj production

Wishful thinking

Missing many needed NLO computations

Campbell

An experimenter's wishlist

■ Hadron collider cross-sections one would like to know at NLO

Run II Monte Carlo Workshop, April 2001

Single boson	Diboson	Triboson	Heavy flavour
$W+\leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + b\overline{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\overline{c} + \leq 3j$	$WW + c\overline{c} + \leq 3j$	$WWW + \gamma \gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\bar{t} + Z + \leq 2j$
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$
$Z + c\overline{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\overline{b} + \leq 2j$
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\overline{b} + \leq 3j$
$\gamma + b\bar{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$		
$\gamma + c\overline{c} + \leq 3j$	$\gamma\gamma + c\overline{c} + \leq 3j$		
	$WZ + \leq 5j$		
	$WZ + b\bar{b} + \leq 3j$		
	$WZ + c\overline{c} + \leq 3j$		
	$W\gamma + \leq 3j$		
	$Z\gamma + \leq 3j$		

Wishful thinking

Missing many needed NLO computations

Campbell

Theoretical status

■ Much smaller jet multiplicities, some categories untouched

Single boson	Diboson	Triboson	Heavy flavour
$W + \leq 2j$	$WW + \leq 0j$	$WWW + \leq 3j$	$t\bar{t} + \leq 0j$
$W + b\bar{b} + \leq 0j$	$WW + b\overline{b} + \le 3j$	$WWW + b\overline{b} + \le 3j$	$t\bar{t} + \gamma + \leq 2j$
$W + c\overline{c} + \leq 0j$	$WW + c\overline{c} + \le 3j$	$WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + W + \leq 2j$
$Z + \leq 2j$	$ZZ + \leq 0j$	$Z\gamma\gamma + \leq 3j$	$t\overline{t} + Z + \leq 2j$
$Z + b\overline{b} + \leq 0j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 0j$
$Z + c\bar{c} + \leq 0j$	$ZZ + c\bar{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\overline{b} + \leq 0j$
$\gamma + \leq 1j$	$\gamma\gamma + \leq 1j$		$b\bar{b} + \leq 0j$
$\gamma + b\overline{b} + \leq 3j$	$\gamma\gamma + b\bar{b} + \leq 3j$		
$\gamma + c\bar{c} + \leq 3j$	$\gamma\gamma + c\overline{c} + \leq 3j$		
	$WZ + \leq 0j$		
	$WZ + b\bar{b} + \leq 3j$		
	$WZ + c\overline{c} + \leq 3j$		
	$W\gamma + \leq 0j$		
	$Z\gamma + \leq 0j$		

Computing cross sections at NLO

Two components of an NLO calculation:

Obtain a cross section in the form:

$$\sigma_{NLO} = \int d\Phi_n \left(\sigma_B + \alpha_S \sigma_{virt}\right) + \alpha_S \int d\Phi_{n+1} \sigma_{real}$$

- Dealing with divergences
 - UV: cancel with coupling constant renormalization
 - IR: typically use dipole subtraction (Catani, Seymour)
 - Introduce counterterm D which reproduces IR divergences of σ_{real} :

$$\sigma_{NLO} = \int d\Phi_n \left(\sigma_B + \alpha_S \left[\sigma_{virt} + D_I\right]\right) + \alpha_S \int d\Phi_{n+1} \left[\sigma_{real} - D\right] \ ,$$
 with $D_I = \int d\Phi_1 \, D$

- Cancel divergences analytically in $\sigma_{virt} + D_I = \sigma_{virt}^{fin}$
- $\sigma_{real} D$ is pointwise finite, numerically integrable

Obstacles at NLO

- Two major sticking points at NLO:
 - Going beyond $2 \rightarrow 3$ processes
 - Large number of processes needed
- Root cause: multi-leg ($N \ge 5$) virtual integrations
 - Many scales $(s_{ij}, M_W, m_H, m_t, ...)$
 - ⇒ expressions become enormous
 - ⇒ large numerical cancellations between terms
 - → different integrals needed for each process
 - Many singular regions: soft, collinear, UV, thresholds, spurious singularities, ...
 - singular subtractions not as well understood as for real emission contributions
- Goal: automated, general method, as for real contributions
 - Also want a flexible approach to be ready for LHC analyses

Schematic of NLO virtual corrections

What we get from Feynman diagrams for $2 \rightarrow N-2$:

$$I_N^m = \int d^dk \, \frac{k^{\mu_1} \dots k^{\mu_m}}{[(k+q_1)^2 - m_1^2] \dots [(k+q_N)^2 - m_N^2]}$$

- Large number of integrals which aren't independent
- can reduce tensor structure, use recurrence relations to obtain a minimal set of basis scalar integrals

How much do we do analytically, how much numerically?

- c^i lengthy for large N, many scales
- integrals complicated

Automating NLO virtual corrections

- Hybrid approach (Giele, Glover)
 - Reduce divergences to triangle integrals
 - Solve the remaining recurrence relations numerically
 - Completely avoid lengthy c^i
- Numerical approach (Nagy, Soper)
 - Define counterterms for UV, IR, collinear singularities graph-by-graph
 - Similar to dipole subtraction for real contributions
 - Integrate counterterms analytically, feed remainder directly to numerical integration
- Other approaches suggested (Binoth et. al., ...)
- → No implementation yet of any method

Merging parton showers with NLO

Merging parton showers with NLO

Experimentalists typically use shower MCs for predictions

Begin with:

MC generates shower for each line:

Emissions controlled by Sudakov form-factor:

$$\Delta(x, x_M) = \exp\left(-\alpha_S \int_x^{x_M} d\Phi Q(\Phi)\right)$$

- $Q(\Phi)$ encodes behavior of the soft/collinear emissions
- Typically use several approximations: no shower interference, angular ordering, . . .

Fixed order vs. shower MCs

Fixed order

- + Systematic expansion in α_S
- Based on exact matrix elements; describes hard/wide angle emissions well
- Relatively few partons in final state; no way to hadronize
- Not available beyond leading order for all processes; when available, tend to be spread among different codes

Shower Monte Carlos

- + Generate many partons in the final state; access to hadronization
- Many processes available in a few codes (HERWIG, PYTHIA)
- Doesn't describe hard/wide angle emissions correctly
- Doesn't systematically include higher order corrections ⇒ can't do precision physics

→ Want the advantages of both approaches

Merging parton showers with NLO

Can't just use NLO matrix elements in the MC

- Incompatible with subtraction formalism for NLO corrections
 - D is the soft/collinear limit of $\sigma_{real} \Rightarrow$ has only n-body kinematics
 - Generate different showers for D, σ_{real}
 - ⇒ only cancel divergences after generating showers for each piece

MC@NLO

- Use the MC itself as a counterterm (Frixione, Webber)
 - $Q(\Phi)$ encodes emission singularities \Rightarrow use it as an additional counterterm
 - $Q(\Phi)$, σ_{real} coincide in singular phase space regions, so weights are finite
 - Also removes double counting of real emissions

- Smoothly matches soft/collinear (MC) and hard (NLO) regions
- Works for most observables; MC not a local counterterm for large-angle soft emissions

Progress in NNLO calculations

The NNLO revolution

Tremendous progress recently in NNLO computations

- New computational techniques for two-loop integrals
- Better understanding of singular structure of real radiation
- Many new phenomenological results

Is NNLO necessary?

- Reduced scale dependence
- More partons ⇒ more realistic
- Several concrete physical applications that require NNLO:
 - Higgs production at hadron colliders
 - Drell-Yan (luminosity monitor, PDF measurements)
 - Jet production at hadron colliders (PDFs, α_S extraction)
 - Jet production at e^+e^- colliders

```
\alpha_S(M_Z) = 0.1202 \pm 0.0003(\text{stat}) \pm 0.0009(\text{sys}) \pm 0.0009(\text{had}) \pm 0.0047(\text{th})
```

Anatomy of a NNLO calculation

Virtual-Virtual

Real-Virtual

Real-Real

Two-loop integrals

- Loop integrals satisfy recurrence relations arising from Poincare invariance
 - Use integration-by-parts to derive (Chetyrkin, Tkachov)

•
$$I[\nu_1, \nu_2] = \int d^D k \frac{1}{[k^2]^{\nu_1} [(k+p)^2]^{\nu_2}}$$

• Set
$$\int d^D k \frac{\partial}{\partial k_\mu} \frac{k^\mu}{k^2(k+p)^2} = 0$$

- Derive $I[1,2] = -\frac{D-3}{p^2}I[1,1]$
- Reduce to a small set of master integrals
- Two things to do:
 - Reduce the integrals appearing in the matrix elements to master integrals
 - Calculate the master integrals

Recent virtual progress

Until recently, missing the master integrals

- ⇒ calculated by Smirnov, Tausk
- New methods for solving systems of recurrence relations
 - Old-fashioned method: manipulate recurrence relations manually
 - ⇒ avoids introducing unneeded integrals, but rapidly becomes difficult
 - Algorithmic method (Laporta):
 - Fully automated method of iteratively solving recurrence relations
 - Very general procedure applicable to a large class of problems
 - Efficient implementation now publicly available (Anastasiou, Lazopoulos)

Available two-loop amplitudes

- Recently computed amplitudes for $2 \rightarrow 2$ processes:
 - Two-loop Bhabha scattering in massless QED
 Bern, Dixon and Ghinculov
 - All two-loop $2 \to 2$ QCD processes.

 Anastasiou, Glover, Oleari and Tejeda-Yeomans
 Bern, De Freitas, and Dixon
 - \bullet $\gamma\gamma \rightarrow \gamma\gamma$

- Bern, Dixon, De Freitas, A. Ghinculov and H.L. Wong
- $gg \rightarrow \gamma \gamma$. (Background to Higgs decay.)

Bern, De Freitas, Dixon

• $\bar{q}q \rightarrow \gamma \gamma$, $\bar{q}q \rightarrow g \gamma$, $e^+e^- \rightarrow \gamma \gamma$

Anastasiou, Glover and Tejeda-Yeomans

• $e^+e^- \rightarrow 3$ partons

Garland, Gehrmann, Glover, Koukoutsakis and Remiddi

Moch, Uwer, Weinzierl

• DIS 2 jet and $pp \rightarrow W, Z+1$ jet

Gehrmann and Remiddi

Bern

Recent real progress

- Currently the sticking point in completing NNLO calculations
 - Until recently, no direct calculation of $e^+e^- \rightarrow 2$ jets at NNLO!
 - Tree graphs, so what's the problem?
 - → Understanding their singular structure when partons become unresolved How do we extract their IR singularities before integrating over phase space?
- Two ways to approach the problem:
 - (1) General method which aims for a complete understanding of IR structure
 - (2) Ask for information about restricted, "semi-inclusive" quantities

IR structure at NNLO

Understanding IR singularities at NNLO

- Would allow for completely differential NNLO calculations
- Extensions of the subtraction method to NNLO (Campbell, Glover; Kosower; Weinzierl; Gehrmann-De Ridder, Gehrmann, Glover; Kilgore)

$$\sigma_{NNLO} = \int d\Phi_n \left(\sigma^{(0)} + \alpha_S \left[\sigma_v^{(1)} + D^{(1)} \right] + \alpha_S^2 \left[\sigma_v^{(2)} + D^{(2)} \right] \right)$$

$$+ \alpha_S \int d\Phi_{n+1} \left[\sigma_r^{(1)} - D^{(1)} \right] + \alpha_S^2 \int d\Phi_{n+2} \left[\sigma_r^{(2)} - D^{(2)} \right]$$

- Integrate the $D^{(1,2)}$ analytically, and the remainder numerically
- $D^{(2)}$ must incorporate many limits: 3 collinear, 2 pairs collinear, 1 soft + 2 collinear, . . .
- Alternative approach: Φ_n structure permits an automated extraction of IR divergences (Binoth, Heinrich; Anastasiou, Melnikov, FP)
 - Derive a series in $1/\epsilon$ with numerical coefficients
 - Don't need any analytic integrations
 - Don't need to consider singular limits separately

Semi-inclusive obervables at NNLO

 Can adapt multi-loop techniques to phase space integrals (Anastasiou, Melnikov)

$$\sigma_{lphaeta o 1...n} \propto \int \left[\prod_{i=1}^n d^d q_i \delta\left(q_i^2-m_i^2
ight)
ight] \delta\left(p_{lphaeta}-q_{1...n}
ight) \left|\mathcal{M}_{lphaeta o 1...n}
ight|^2$$

- Cutkosky rules: $\delta\left(q_i^2-m_i^2\right)\Rightarrow rac{1}{q_i^2-m_i^2-i\epsilon}-rac{1}{q_i^2-m_i^2+i\epsilon}$
- Maps phase space integrals ⇒ cut loop integrals
- Can extend to differential quantities (Anastasiou, Dixon, Melnikov, FP)
- Rapidity distributions $(u = \frac{x_1}{x_2}e^{-2Y})$:

$$\frac{d\sigma}{dY} \propto u \int \left[\prod_{i=1}^{n} d^{d}q_{i} \delta\left(q_{i}^{2} - m_{i}^{2}\right) \right] \delta\left(u - \frac{p_{1} \cdot P_{h}}{p_{2} \cdot P_{h}}\right) \delta\left(p_{\alpha\beta} - q_{1...n}\right) \left|\mathcal{M}_{\alpha\beta \to 1...n}\right|^{2}$$

- Make the same replacement for the rapidity constraint
- → Introduce a fictitious particle, whose mass-shell condition ⇔ phase-space constraint
- In the fully differential limit, recurrence relations provide no information

Higgs production at NNLO

Several recent NNLO calculations

(Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven)

- 30 40% residual scale dependence at NLO
- NLO corrections increase LO result by 70 80%
- ⇒ Does the series converge?
- 20% residual scale dependence at NNLO
- NNLO corrections are ≤ 30%

Drell-Yan rapidity distributions

First complete differential result at NNLO

(Anastasiou, Dixon, Melnikov, FP)

- NNLO corrections increase NLO result by 3-5%
- Scale variations 3-6% at NLO, < 1% at NNLO
- Drell-Yan now a high precision probe of QCD

PDFs with NLO Drell-Yan

- Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
- Scale variations render undistinguishable at NLO

PDFs with NNLO Drell-Yan

- Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
- Scale variations render undistinguishable at NLO
- Resolved at NNLO

Fixed target (E866)

- Strong constraint on \bar{q} and $x \to 1$ q_{val} distribution functions
- \blacksquare Reduced μ dependence at NNLO reveals discrepancy with data
- \Rightarrow Tune \bar{q} PDFs

Conclusions

- Exciting prospects for precision physics at future colliders
- Need theoretical work to fully utilize results
- Much more to do before LHC start
- Expect continued progress on several fronts
 - Practical implementations of algorithms for NLO calculations
 - Further development of NNLO subtraction scheme
 - First completely differential NNLO calculations for high-value observables (W, Z, H, \ldots)
- Not yet just turning the crank
- ⇒ room for new ideas!